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Abstract. We study the contribution of the Drell mechanism driven by K+ and K− exchange to the
reaction γN → KK̄N . Our calculation implements the full KN and K̄N reaction amplitudes in the
form of partial-wave amplitudes taken from a meson-exchange model (KN) and a partial-wave analysis
(K̄N), respectively. Comparing our results to data of the LAMP2 Collaboration we observe that the
Drell mechanism alone cannot describe the large Λ(1520) photoproduction rate observed experimentally.
We argue that the discrepancy could be due to significant contributions from K∗ meson exchange with
subsequent excitation of the Λ(1520)-resonance. After adding such contributions to our model a good
agreement of the LAMP2 experiment is achieved. When applying the same model to the recent SAPHIR
data we find an excellent description of the K+p spectrum and find indications for a hyperon resonance
with MR = 1617MeV and ΓR = 117MeV in the K−p mass distribution.

PACS. 12.40.Nn Regge theory, duality, absorptive/optical models – 13.60.Le Meson production – 13.60.Rj
Baryon production – 13.75.Jz Kaon-baryon interactions

1 Introduction

The reaction γN → KK̄N offers an excellent opportu-
nity for hadronic spectroscopy. First of all, it allows ac-
cess to the KN system, a channel which has received
much attention recently because the exotic Θ+(1540) pen-
taquark couples to it. With regard to that issue exper-
iments were performed at SPring-8, CEBAF and ELSA
using either a free or bound target nucleon [1–4]. The K̄N
system can serve as a source for hyperon resonance spec-
troscopy. In fact, the most recent data on the Λ(1520)
hyperon quoted by PDG [5] were obtained by the LAMP2
group [6] from the reaction γp → K+K−p at photon en-
ergies 2.8 ≤ Eγ ≤ 4.8GeV. Moreover, the missing-mass
spectrum measured in γp → K+X at Eγ = 11GeV [7]
indicates many Λ and Σ resonances and clearly illustrates
the promising perspectives of the reaction γN → KK̄N
with respect to hyperon spectroscopy. Finally, the KK̄
system allows one to investigate mesonic resonances with
normal and exotic quantum numbers. Among those are
the light scalar mesons f0(980) and a0(980) whose nature
is still under debate [8–10].
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The different baryonic and mesonic resonances that
can occur in the reaction γN → KK̄N induce a con-
siderable complexibility in the overall data analysis. In
particular, possible kinematical reflections, but also mo-
menta and angular cuts of the final state due to a limited
detector acceptance might generate resonance-like struc-
tures [11], which do not correspond to genuine physical
quantities. Thus, it would be rather useful to construct a
phenomenological model that allows to control and con-
strain the background as much as possible. Thereby, it is
crucial that one includes not only “true” background con-
tributions but also available experimental information on
already well-established baryonic and mesonic resonances
that may contribute to the final state. Indeed, a simi-
lar strategy was followed by Drell [12], Söding [13] and
Krass [14] for the analysis of the reaction γp→ π+π−p al-
ready a long time ago. In particular, Söding [13] suggested
that one should construct a model that incorporates the
Drell mechanism using available experimental information
for πN → πN elastic scattering and then apply this model
to the γN → ππN reaction to search for new resonances
or new phenomena [15,16].

The principal aim of our work is to develop a model
for the background to the reaction γN → KK̄N . Thereby
we want to rely primarily on contributions that can
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be strongly constrained by presently available and well-
established experimental results. To be more concrete, in
the present paper we consider the Drell mechanism for the
reaction γN → KK̄N . This allows us to take into account
the experimental knowledge of the reaction amplitudes in
the KN and K̄N subsystems. Specifically, we can natu-
rally account for the manifestation of resonances in the
K̄N and KN channels. For the former this concerns, in
particular, the Λ(1520)-resonance. The results of our cal-
culation are then compared with available experimental
data on photoproduction of the Λ(1520) and specifically
with the K+p and K−p invariant-mass spectra reported
by Barber et al. [6].

Within the last years several papers have appeared
that deal with the reaction γN → KK̄N and/or the
photoproduction of the Λ(1520) hyperon [17–23]. Most
of those investigations were driven by the quest for the
Θ+(1540) pentaquark. Though a large variety of reaction
mechanisms were considered none of those studies takes
into account the Drell mechanism based on the full KN
and K̄N amplitudes. In fact, in some works K exchange
is considered but then the KN and/or K̄N amplitudes
are approximated by tree-level resonance and/or t-channel
meson-exchange diagrams [19,23].

Therefore, our present paper is complementary to
those other studies and, moreover, it has the potential to
provide additional and important information on the pho-
toproduction of the KK̄ system. Specifically, it allows for
a reliable evaluation of the background contribution due
to K exchange that is present in all such photon-induced
reactions and thus should be taken into account in the
analysis of experimental results.

It will be shown in our analysis that the Drell mech-
anism alone is not sufficient to explain the K+p and
K−p invariant-mass spectra measured by the LAMP2
group [6]. Specifically, the latter is significantly underesti-
mated in the region of the Λ(1520) peak. This implies that
the Λ(1520) photoproduction cross-section is much larger
than in corresponding hadron-induced reactions. We then
consider K∗ meson exchange in conjunction with the ex-
citation of the Λ(1520)-resonance as additional reaction
mechanism. Within such a scenario it is indeed possible
to achieve a satisfactory description of the large Λ(1520)
photoproduction rate as reflected in the K−p mass spec-
trum [6].

The paper is organized as follows. In sect. 2 we formu-
late our model to calculate the Drell mechanism. In partic-
ular, we specify the KN and K̄N amplitudes that we em-
ploy in our investigation. Section 3 presents a comparison
between available data on K+p and K−p invariant-mass
spectra from the reaction γN → KK̄N with our results
based on the Drell mechanism. We also consider additional
contributions which we assume to be due to K∗ meson
exchange. In sect. 4 we apply our model to the recent
SAPHIR data for γp → K+K−p. We demonstrate that
from these data one can indeed deduce the parameters of
a hyperon resonance, probably the Λ(1600). A comparison
with new data from the CLAS Collaboration is presented
in sect. 5. We summarize our results in the Conclusion.

Fig. 1. Diagrams for the reactions γN → KK̄N . The Drell
mechanism for K exchange with full K̄N and KN resonant
and nonresonant amplitudes is shown by a) and b). Diagrams
c) and d) show K and K∗ exchanges through the excitation of
Y hyperon resonances only. Note that in the Drell mechanism
the diagram c) is naturally included in the process a).

2 The Drell mechanism and the K̄N reaction

The Drell mechanism for the reaction γN → KK̄N is
shown by the two diagrams a) and b) in fig. 1. Only the
exchanges of charged kaons K+ and K− contribute to the
reaction, since photons do not couple to neutralK mesons.
However, the rescattering amplitude includes both elastic
scattering and charge exchange. The amplitude for the
t-channel K− exchange is given as [12–14]

MK− = −2εγ · q1
e TK−p(s2, t2)F (t1)

t1 −m2
K

, (1)

where εγ is the photon polarization vector, q1 is the mo-
mentum of the K+ meson in the γN c.m. system, t1 is the
squared four-momentum transferred between the photon
and the K+ meson and TK−p is the K−p scattering or
charge-exchange amplitude, which depends on the squared
invariant mass s2 of the K−p system and the squared
four-momentum t2 transferred from the initial to the fi-
nal proton. Furthermore, F is a form factor that accounts
for the offshellness of the K−p scattering amplitude. This
form factor is taken in the form proposed by Ferrari and
Selleri [24]:

F (t1) =
1

1 + (m2
K − t1)/t0

. (2)

We fix the cutoff parameter t0 via a fit to data on the
total reaction cross-section for γp → K+K−p. The re-
sulting value is t0 = 0.33GeV2, which corresponds to a
cutoff mass of Λ = 0.76GeV within a standard monopole
form factor. The γK+K− vertex contains no form fac-
tor because of the Ward identity. The amplitude for the
t-channelK+ exchange has the same structure except that
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then TK+p enters and, of course, the form factor F in the
KN → KN vertex could be different as well. We imple-
ment current conservation by adopting the prescription
of deForest and Walecka to replace the longitudinal cur-
rent q̂ · j(q) by j0(q)q0/q [25], where q denotes the photon
momentum. This corresponds to the addition of an ap-
propriate contact interaction between the photon, kaon,
and nucleon. Note, that such contact terms arise also in
the formalism of Haberzettl [26] which was recently ap-
plied to the photoproduction of kaons in the vicinity of
the pentaquark [27], though one must say that in the lat-
ter case this prescription is based on the Ward-Takahashi
identity while it is essentially ad hoc in our case.

In case of kaon exchange the elementary (K̄N and
KN) scattering processes take place even farther off-shell
than those in the reaction γp → π+π−p. Still we believe
that it is a good working hypothesis to use the on-shell
amplitudes in eq. (1) but take into account the offshell-
ness of the actual elementary reaction effectively by intro-
ducing a form factor. It rests on the expectation that the
s2 (and t2) dependence of the elementary amplitudes, cf.
eq. (1), remain largely unchanged when the reaction takes
place off-shell. This expectation is supported by experi-
ence with other reactions. For example, one knows from
meson-production reactions in NN collisions (pp → ppx,
x = π, η, η′ . . . ) that the energy dependence of the re-
action cross-section is strongly dominated by the energy
(s) dependence of elastic pp scattering, even though in the
production reaction the relevant pp interaction in the final
state takes place far off-shell, see, e.g., ref. [28].

In the Drell formulation all possible resonances cou-
pled to either the KN or K̄N channels enter the calcu-
lations through the KN → KN or K̄N → K̄N scat-
tering or charge-exchange amplitudes. Keeping in mind
that the available data on hyperon-resonance properties
are quite uncertain [5], calculations utilizing the experi-
mentally available K̄N → K̄N amplitudes at least allow
one to incorporate the best phenomenological information
into the treatment of the reaction γN → KK̄N . In that
respect the Drell mechanism provides consistency between
the data on K̄N → K̄N elastic scattering and KK̄N
photoproduction. Similar considerations hold for the KN
system.

Originally Söding [13] proposed that one parameterizes
the invariant elastic amplitude (in our case TK̄N and TKN )
directly from the data on the total cross-section σtot by
exploiting the optical theorem,

TKN (s2, t2) = −2iq2
√
s2 σtot(s2) exp (bt2), (3)

where s2 is theKN (K̄N) invariant mass squared, q2 is the
modulus of the c.m. momentum and t2 is the squared four-
momentum transferred from the initial to the final nu-
cleon. Here b is the exponential slope of the t-dependence
taken from the data. This approximation is, in principle,
sufficient to calculate the energy dependence of the reac-
tion and the KN (K̄N) mass distribution. However, for
an application involving cuts on certain momenta and an-
gles one needs the specific dependence of the KN (K̄N)
amplitude on those quantities and then the simple exp (bt)
ansatz is not adequate.

In order to circumvent this problem Berestetsky and
Pomeranchuk [29] and also Ferrari and Selleri [30] pro-
posed that one parameterizes the invariant scattering am-
plitude directly from differential elastic scattering cross-
section data:

|TKN (s2, t2)|2 = 64π s2 q
2
2

dσel(s2)

dt2
. (4)

At least this approximation allows one to account for
many details of the nuclear reactions and to reconstruct
general features of the underlying dynamics [31–33]. How-
ever, even this form is not suitable for the present case
where two different amplitudes connected with K+ and
K− meson exchanges, respectively, enter the calculation
coherently.

Thus, the most consistent way is to use the partial-
wave decomposition of the scattering amplitude given by

G(s2, θ) =
1

q2

∑

l

[(l + 1)T+
l (s2) + lT−l (s2)]Pl(cos θ),

H(s2, θ) =
sin θ

q2

∑

l

[T+
l (s2)− T−l (s2)]

dPl(cos θ)

d cos θ
, (5)

where G and H are the spin-nonflip and spin-flip ampli-
tudes [34], respectively, Pl(cos θ) are the Legendre poly-
nomials and θ is the scattering angle in the c.m. system.
The partial-wave amplitudes (for the KN as well as the
K̄N systems) are defined as

T±l =
η±l exp(2iδ±l )− 1

2i
, (6)

where η±l and δ±l denote the inelasticity and the phase
shift, respectively, for the total angular momentum J =
l±1/2. The relation between the invariant G and H scat-
tering amplitudes and various scattering observables can
be found, for example, in ref. [34]. An application of the
partial-wave amplitudes to the analysis of the reaction
γp → π+π−p for the Drell mechanism contribution us-
ing the Söding model is described in detail in ref. [15].
Note that the partial-wave decomposition is given in the
isospin basis and therefore any of the final channels of the
reaction γN → KK̄N can be calculated.

In our investigation we use the KN amplitudes from
the Jülich meson-exchange model. A detailed description
of the model is given in refs. [35,36]. The model yields
a satisfactory reproduction of the available experimental
information on elastic and charge-exchange KN scatter-
ing including angular spectra and polarization data up to
an invariant mass of the KN system of

√
s2 ' 1.8GeV.

For higher energies we adopt the phenomenological ansatz
given by eq. (3) utilizing experimental data compiled in
ref. [37]. Let us mention in this context that the KN am-
plitude from the Jülich model was used by us recently for
determining new limits for the Θ+ pentaquark width from
the data available for the K+d→ K0pp reaction [38] and
also for an analysis of the DIANA experiment [39], where
the Θ+ pentaquark was reportedly observed in K+ meson
collisions with Xe nuclei [40]. Therefore, as an advantage,
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Fig. 2. The K−p→ K−p and K−p→ K̄0n cross-sections as a
function of the invariant collision energy. The solid lines show
results based on the full reaction amplitude, while the dashed
lines indicate the contribution from the D03 partial wave alone.
The data are taken from refs. [5,43,44].

our approach offers the possibility for the self-consistent
inclusion of the Θ+ pentaquark via the KN scattering
amplitude, where the latter has already been developed
and compared to other available data [38,40].

The K̄N amplitudes are reconstructed from the re-
sult of a multichannel partial-wave analysis (PWA) [41]
available for K̄N scattering for invariant collision energies
1.48 ≤ √

s2 ≤ 2.17GeV. For
√
s2 ≤ 1.48GeV we adopt

the K-matrix solution of Martin and Ross [42], which sat-
isfactorily describes all available experimental results be-
low the energy of 1.48GeV. The K-matrix solution in-
cludes only S-waves for the I = 0 and I = 1 channels.
However, the data shown in ref. [42] illustrate that for√
s ≤ 1.48GeV the contribution from higher partial waves

is small.
The usefulness of the Drell approach with respect to

analyzing the data becomes obvious by first looking at the
results for the cross-section of the reactions K−p→ K−p
and K−p → K̄0n, shown in fig. 2. Here the experimen-
tal information, taken from refs. [5,43,44], is compared
with calculations utilizing the total K̄N scattering am-
plitude of ref. [41] (solid lines) with results that take
into account only the contribution from the D03 partial

wave (dashed lines). (We use here the standard nomen-
clature LI 2J .) Note that the D03 partial wave contains

the (I(JP ) = 0( 32
−
)) Λ(1520)-resonance with nominal

mass 1519.5± 1.0MeV and full width 15.6± 1.0MeV [5].
While the K−p→ K−p reaction shows almost no trace of
the Λ(1520), the charge-exchange reaction K−p → K̄0n
clearly indicates a resonance structure. This difference can
be understood by recalling that the reaction amplitude for
the K−p→ K−p channel consists of (half of) the sum of
the I = 0 and I = 1 amplitudes, while the K−p → K̄0n
reaction is given by (half of) their difference. Since both
I = 0 and I = 1 amplitudes contain large nonresonant
contributions, it turns out that this nonresonant back-
ground cancels to a large extent for the K−p → K̄0n
amplitude. Figure 2 demonstrates quite strikingly that the
contribution of the D03 partial wave to the K−p→ K−p
reaction is almost negligible compared with the nonres-
onant background, while its contribution to the charge-
exchange channel is sizeable.

This observation suggests that kaon exchange (viz.
the Drell mechanism) should not produce a pronounced
Λ(1520) signal in the invariant mass of theK−p system for
the reaction γp→ K+K−p but only in the γp→ K+K̄0n
channel. Consequently, if the reaction γp→ K+K−p does
indeed show a substantial effect of the Λ(1520)-resonance,
it is a strong indication that mechanisms other than the
Drell mechanism dominate the reaction [6].

Figure 2 illustrates also that any model calculation of
the reaction γN → KK̄N where the employed K̄N →
K̄N amplitude is constructed from hyperon resonances
alone (cf. diagram c) in fig. 1) —as it is the case in so-
called resonance models— is definitely not realistic, since
there are significant nonresonant contributions to the scat-
tering amplitude. In this context let us emphasize that the
K̄N → K̄N amplitude contains large contributions from
higher partial waves. Figure 3 shows the angular distribu-
tion of the K− mesons in the c.m. system of the reaction
K−p → K−p reaction, which clearly manifests the in-
creasing importance of higher partial waves with increas-
ing invariant collision energy,

√
s2.

With the partial-wave decomposition for the ampli-
tudes G and H given in eq. (5) the differential cross-
section can be readily evaluated for the specificD03 partial
wave where the Λ(1520)-resonance occurs:

dσ

d cos θ
= |G|2 + |H|2 =

∣

∣

∣

∣

T−2 (s2)

q2

∣

∣

∣

∣

2

(3 cos2 θ+1). (7)

The resulting angular dependence, 1+3 cos2 θ, is shown
by the dashed lines in fig. 3, arbitrarily normalized to
the data. It is evident that the 1+3 cos2 θ function alone
does not describe the data at

√
s = 1520MeV; additional

contributions, from other partial waves, are required. The
solid lines in fig. 3 represent results with the total reaction
amplitude, i.e. with all partial waves including the D03.
It is interesting to note that while the Λ(1520)-resonance
remains almost undetectable in the K−p→ K−p reaction
cross-section shown in fig. 2, because of the large back-
ground, this resonance can be well reconstructed from an
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Fig. 3. Differential cross-section for K−p scattering as a func-
tion of the K− meson scattering angle in the c.m. system for
different invariant collision energies,

√
s2. The solid lines show

results based on the full reaction amplitude, while the dashed
lines indicate the distribution given by 1 + 3 cos2 θ normalized
to the data. The data are taken from refs. [43,44].

analysis of the angular distributions. A detailed discussion
of the K− meson angular spectra at energies around the
Λ(1520)-resonance is given in ref. [45].

Figure 4 shows the cross-section of the γp→ K+K−p
reaction as a function of photon energy. The circles repre-
sent experimental information collected in ref. [46].

The total γp → K+K−p cross-section is given by in-
tegration of the Chew-Low distribution [47]

dσ

ds2dt1
=
|MK+ +MK− |2
29π3(s−m2

N )2
λ1/2(s2,m

2
K ,m

2
N )

s2
, (8)

where the function λ is defined by

λ(x, y, z) =
(x− y − z)2 − 4yz

4x
. (9)

The dashed line in fig. 4 is the result with a constant
invariant γp → K+K−p reaction amplitude, i.e. M =
const, suitably adjusted to the data. The full calculation
(solid line in fig. 4) reproduces the energy dependence of
the data reasonably well from threshold up to a photon
energy of ' 5GeV —i.e., over the whole energy range
covered by the LAMP2 experiment. Also in this case the
absolute value of the model result was adjusted to the
data, namely by tuning the cutoff mass in the form factor
eq. (2), cf. above. Indeed, the experimental KN invariant-
mass spectra which we want to investigate with our model

Fig. 4. Cross-section of the reaction γp→ K+K−p as a func-
tion of the photon energy. The dashed line is the result obtained
with a constant reaction amplitude while the solid line shows
the result for the Drell mechanism. The symbols represent data
collected in ref. [46].

are given without absolute normalization, so that the over-
all normalization is irrelevant for our application anyway.

3 Invariant KN mass spectra from the

reaction γp → K+K−p

The K+p and K−p invariant-mass spectra were measured
by the LAMP2 group [6] in the reaction γp → K+K−p
with a tagged photon beam with an energy 2.8 < Eγ <
4.8GeV. Figures 5, 6 show the invariant-mass spectra for
the K+p and K−p subsystems. Note that for the photon
energy of 4.8GeV the maximal invariant mass of the KN
system ranges up to roughly 2.65GeV. The experimental
K−p mass spectrum is provided only up to ' 1.65GeV in
ref. [6], while the data for the K+p mass distribution are
given over almost the whole available range.

The dotted lines in figs. 5, 6 represent the phase space
distribution

dσ

ds2
=
λ1/2(s, s2,m

2
K)λ1/2(s2,m

2
N ,m

2
K)

28π3 s s2 (s−m2
N )

|M|2, (10)

evaluated for the fixed averaged photon energy of 3.8GeV
and assuming a constant reaction amplitude, i.e. M =
const. In our notation the invariant KN mass M(KN)
is given by M(KN)=

√
s2. Since the experimental results

are available only with arbitrary normalization we adjust
the amplitude M to the K−p background at invariant
masses above the resonance structure corresponding to the
Λ(1520), i.e. around 1570MeV. The same normalization
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Fig. 5. The K+p invariant-mass spectrum from the γp →
K+K−p reaction. The dotted line is the result obtained with
a constant reaction amplitude for the fixed photon energy
3.8GeV. The dashed line shows the result for the Drell mech-
anism, while the solid line is obtained after inclusion of addi-
tional K∗ meson exchange for Λ(1520) production. Here the
photon energy is averaged over 2.8 < Eγ < 4.8GeV in consis-
tency with the experiment. The data are taken from ref. [6].

factor is then used also in the evaluation of the K+p mass
spectrum.

From fig. 5 it is obvious that the phase space distri-
bution differs from the measured mass dependence of the
K+p spectrum. On the other hand, the measurement ex-
hibits large fluctuations and therefore it is hard to say
to what extent the structure of the data reflects underly-
ing physics or whether it is simply a consequence of poor
statistics. Nonetheless, it appears that there is an excess of
events at high K+p invariant masses. Note that the inci-
dent photon energy distribution in the experiment is pro-
portional to E−1γ and, therefore, naively one expects more

events at low K+p masses. Fortunately, the K−p data
themselves indicate a possible explanation of that prob-
lem, namely the presence of a clean resonance structure
around M(K−p) = 1520 MeV and probably at around
M(K−p) = 1620MeV, cf. fig. 6. One would expect that
a large contribution at low K−p masses, like that associ-
ated with the Λ(1520)-resonance, would be kinematically
reflected in the K+p mass spectrum and cause a substan-
tial shift to higher M(K+p) values in the latter.

Within an analysis based on the Drell mechanism the
resonances at M(K−p) = 1520MeV and M(K−p) =
1620MeV enter via the elastic K−p → K−p scattering
amplitude. Indeed the partial-wave analysis includes the

Λ(1520) JP = 3
2

−
and Λ(1600) JP = 1

2

+
resonances in

the D03 and the P01 partial-waves, respectively. However,
the elastic scattering data depicted in fig. 2 as well as
the K−p amplitude of the PWA do not show any obvious

Fig. 6. The K−p invariant-mass spectrum for the reaction
γp→ K+K−p. Same description of the curves as in fig. 5. The
dash-dotted line indicates the contribution of a Λ(1600) P01-
resonance, discussed in sect. 4. The circles are data taken from
ref. [6].

signal of those resonances, as already pointed out earlier.
Therefore, we do not expect that a calculation based on
the Drell mechanism will be able to reproduce these res-
onances as observed in the K−p invariant-mass spectrum
of the reaction γp→ K+K−p.

This is indeed the case as can be seen from our results
for the Drell diagrams which correspond to the dashed
histograms in figs. 5 and 6. Obviously, there is only a
small, hardly noticeable enhancement in the K−p mass
spectrum due to the Λ(1520)-resonance and the same is
the case also for the Λ(1600)-resonance. The E−1γ factor
of the photon energy distribution is now included in the
calculation and it is obvious from fig. 5 how the spectrum
is shifted to lower K+p invariant masses because of that.
Note that the results based on the Drell mechanism were
normalized in such a way that we are in line with the low
invariant-mass spectrum of the K−p system, in concrete
with the two data points at M(K−p) < 1.46GeV, and we
use again the same normalization for the K−p and K+p
results. Also, our calculations were developed in line with
the Söding model [13] in order to allow for possible kine-
matic cuts and simulation of the detector acceptance of
current experiments. The integration over phase space is
based on the Monte Carlo method that allows one to con-
struct an event generator. That is why the calculations
are shown as histograms.

The results in fig. 6 make it clear that additional re-
action mechanisms need to be considered if one wants
to describe the experimental K−p invariant-mass spec-
trum. To account for such additional mechanisms we re-
sort here to K∗ meson exchange with subsequent excita-
tion of the Λ(1520)-resonance, as depicted by the diagram
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d) in fig. 1. Indeed, the experimental helicity-frame an-
gular distribution of the Λ(1520) decay for the reaction
γp → K+K−p [6] strongly suggests that K∗ exchange
should play an important role. Note, however, that while
our calculation of the Drell mechanism is considerably
constrained by experimental information on the KN and
K̄N amplitude and therefore can be considered as a solid
background for the reaction γN → KK̄N , this is not the
case for the K∗ exchange because there are no data on the
reaction K∗N → KN (or K∗N → K̄N). Furthermore, it
is possible that many different Λ and Σ hyperon reso-
nances are excited in the γN → KK̄N reaction through
K∗ meson exchange. But the relevant coupling constants
of theK∗ meson to the hyperon resonances are completely
unknown. Thus, the best one can do is to start with the
general structure of the K∗ exchange amplitude for hy-
peron resonance photoproduction and to fit the unknown
parameters to the presently available data. For reasons of
simplicity we decided to take into account only the ex-
citation of the Λ(1520)-resonance. This has the advan-
tage that one can at least use the available data on the
reaction γp → K+Λ(1520) to constrain the parameters.
Details about the structure of the employed K∗ exchange
amplitude are given in the appendix, together with a com-
parison to the γp→ K+Λ(1520) data.

We should also mention that, of course, it is only an
assumption that the needed additional contributions come
from theK∗ exchange alone. In principle, any other meson
exchange could contribute as well. For example, the K∗

and K∗∗ exchanges have the same trajectories. In princi-
ple, they yield different signatures, but to distinguish be-
tween them one needs polarization data. Since such data
are not available we follow general practise [48] and apply
only the K∗ exchange. The trajectories of other strange
mesons (K1, etc.) are low lying in the J-plane and, there-
fore, the corresponding amplitudes are practically negligi-
ble. And even scenarios like those considered in refs. [20,
21], where the bulk of the γp→ K+Λ(1520) cross-section
is generated by contact terms, are possible.

The solid histograms in figs. 5 and 6 represent theK+p
andK−p invariant-mass spectra evaluated withK andK∗

meson exchanges. The calculation reproduces quite well
the experimental K−p invariant-mass spectra. Note that
we do not include the Λ(1600)-resonance excitation viaK∗

meson exchange since there is no experimental informa-
tion about the energy and t-dependence of its production
and also no data on the spin density matrix. As a conse-
quence our calculation underestimates the K−p spectrum
in the corresponding invariant-mass region. However, we
will come back to this issue in the next section.

The inclusion of the K∗ meson exchange also im-
proves the description of the K+p invariant-mass spec-
trum. In particular, we now find a noticeable enhancement
at higher invariant masses. However, we still underesti-
mate the K+p mass spectrum at masses above 1.8GeV.
The discrepancy might be related to the production of
other hyperon resonances with masses above 1.650GeV,
i.e. in the K−p invariant-mass region not covered by the
LAMP2 experiment [6]. If such resonances can be pro-

duced by K∗ meson exchange they would be seen in the
K−p invariant-mass distribution —and adding their con-
tributions to the γp→ K+K−p amplitude might improve
the description of the K+p mass spectrum. However, at
this stage and without data, this remains pure speculation.

Finally, let us mention that we have not considered
the contribution of the φ meson in our calculation for the
following reason: It is common practice that the φ con-
tribution is removed by the experimentalists from their
data by cutting the φ peak in the K+K− mass spectra.
It is done because the φ peak can be identified very easily
in the data and, therefore, its contribution to the back-
ground can be isolated practically in a model-independent
way. We know explicitly that the φ was subtraced in the
SAPHIR and CLAS experiments, which will be discussed
below, because we could ask the experimentalists directly.
Concerning the Barber experiment, we have been unable
to get a direct confirmation, but we assume that also here
the φ meson contribution was removed from the K−p and
K+p spectra in the usual way.

4 Application to the SAPHIR data

As a first application of our model and in order to demon-
strate its potential for future analyses we present here
a comparison with data on the reaction γN → KK̄N
taken recently by the SAPHIR Collaboration at ELSA
(Bonn). Their study of the channel γp → K+K0

sn was
among the first which revealed evidence for the Θ+(1540)
pentaquark [3]. However, the group has also provided
invariant-mass spectra for the K−p and K+p systems
from the reaction γp → K+K−p [3,49] which we want
to analyze now. In their experiment the photon energy
range is 1.74 ≤ Eγ ≤ 2.6GeV, i.e. significantly lower than
in the LAMP2 experiment.

The results of our model (including both the Drell
mechanism and the K∗ exchange contribution) are shown
in fig. 7 for the SAPHIR experiment. Since the data
are without absolute normalization we readjusted our
model predictions to the K+p invariant-mass spectrum
for M(K−p) < 1.46GeV. It is obvious from fig. 7 that
the K+p mass spectrum is nicely reproduced over the
whole invariant-mass range. Moreover, at the same time
(and with the same normalization) there is also excellent
agreement with the K−p spectrum in the region of the
Λ(1520)-resonance, as well as at high invariant masses, cf.
fig. 7. However, there is some excess in the experimen-
tal mass spectrum around 1600MeV. If one subtracts the
model prediction from the SAPHIR data one obtains the
results shown in fig. 8. It is interesting to see that this dif-
ference strongly resembles a resonance signal, something
one would not have guessed easily from the original data
in fig. 7. Fitting this difference with a relativistic Breit-
Wigner amplitude, eq. (A.8), yields the values

MR = 1617± 2MeV, ΓR = 117± 4MeV, (11)

with a χ2 per data point of χ2/N=4. The large χ2/N re-
flects the considerable fluctuation of the data. Note that
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Fig. 7. The K+p and K−p spectra for the γp → K+K−p

reaction measured by the SAPHIR Collaboration [3,49]. Same
description of curves as in fig. 6.

the errors given for the mass and width of the resonance
in eq. (11) are those deduced from the χ2 surface utiliz-
ing the values with χ2+1 confidence level in the standard
way. They do not reflect uncertainties from other possible
sources, which in our opinion cannot be quantified reliably
at the moment anyway.

We are inclined to identify this structure with the
Λ(1600) P01-resonance [5], though we are aware that fur-
ther and more careful analyses are needed in order to sub-
stantiate such a claim, specifically because the PDG lists
also other hyperon resonances in this energy region [5],
e.g., the Σ(1580) and Σ(1620). Independently of that, we
believe that this particular case already demonstrates very

Fig. 8. The difference between the SAPHIR data [3,49] for the
K−p invariant-mass spectra of γp → K+K−p and our model
prediction. The solid line indicates the fit with a relativistic
Breit-Wigner function.

clearly the power of a reliable model for the background to
the reaction γN → KK̄N in the analysis of experimental
data. Two further short comments are in order: First, the
SAPHIR Collaboration is in the process of analyzing the
Λ(1520) signal in their data [50] and, second, we speculate
that the sharp signal on the left side of fig. 8 is related to
the excitation of the Λ(1405) through K∗ exchange. This
deserves further study.

As a consistency check, we have added the contribution
of the Λ(1600)-resonance to the K−p invariant-mass spec-
trum of ref. [6], as shown by the dash-dotted line in fig. 6.
One can see that its contribution is indeed consistent with
these data, however, the figure also underlines our earlier
statement that the data from [6] are not sufficiently precise
to allow an extraction of resonance properties for invariant
masses above the Λ(1520).

Coming back to the K+p mass spectrum of the
SAPHIR Collaboration we would like to emphasize that
its dependence on the invariant mass M(K+p) is rather
smooth up to the highest values as can be seen in fig. 7.
Therefore, we believe that the structures seen in the cor-
responding LAMP2 data, cf. fig. 5, are most likely fluctua-
tions associated with low statistics. This concerns presum-
ably also events at those higher invariant masses which
are not covered by the SAPHIR data. Anyway, it would
be interesting to explore this region again experimentally
with much better statistics than what was available in the
LAMP2 experiment.

5 Application to the CLAS data

Recently, also the CLAS Collaboration reported [51] new
results on the reaction γp→ K+K−p for photon energies
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Fig. 9. The K−p spectrum for the reaction γp → K+K−p

as measured by the CLAS Collaboration [51]. The open circles
and dots show results obtained with different criteria for the
final-state particle reconstruction. The data are not efficiency
corrected. The solid histogram is our calculation for the photon
energies 1.8 ≤ Eγ ≤ 3.8GeV.

of 1.8 ≤ Eγ≤3.8 GeV. However, unfortunately their data
are not efficiency corrected [52]. Thus a direct comparison
of our results with those data and, specifically, an analysis
similar to the one for the SAPHIR data with the aim to
extract possible contributions from hyperon resonances is
not possible at this stage. Still we find it interesting to
compare the prediction for the K−p invariant-mass spec-
trum resulting from the Drell mechanism with those data.

The solid histogram in fig. 9 shows the result of our cal-
culation based on the diagrams a) and b) of fig. 1 and tak-
ing into account additional contributions to the Λ(1520)
production due to K∗ exchange. The uncorrected exper-
imental spectra are from ref. [51], where the two sets of
data points (open circles and dots) were obtained by using
different criteria for the final-state particle reconstruction.
For the comparison we normalized both sets of the data
and our calculation at the maximal yield of the Λ(1520)-
resonance. Our calculation clearly indicates that the K−p
mass spectra at 1.8 ≤ Eγ ≤ 3.8GeV provide an excel-
lent tool to identify possible additional contributions from
high-mass hyperon resonances. Also, an additional mea-
surement of the angular spectra in the Gottfried-Jackson
system at fixed K−p masses would provide valuable infor-
mation for the hyperon resonances spectroscopy. Thus, it
will be interesting to analyze the CLAS data within our
model once these data are efficiency corrected. Only then
a concrete conclusion can be made.

6 Conclusion

We have studied the reaction γN → KK̄N utilizing the
Drell mechanism and taking into account the full reaction
amplitudes for the KN and K̄N subsystems. Our results

show that the Drell mechanism for kaon exchange alone
is not sufficient to describe the available data on the K+p
and K−p invariant-mass spectra. Thus, we have included
K∗ meson exchange as an additional reaction mechanism.
By assuming a largeK∗ coupling to the Λ(1520)-resonance
a quantitative description of theK−p invariant-mass spec-
trum can be achieved. Moreover, our model calculation
also yields a good overall reproduction of the cross-section
data for the photoproduction of the Λ(1520)-resonance,
i.e. of its energy and t-dependence.

In the paper by Barber et al. [6] it was argued, based on
the measured distribution of the Λ(1520) decay into the
K−p channel in the Gottfried-Jackson frame, that kaon
exchange alone cannot account for the Λ(1520) production
mechanism. Our investigation, utilizing the Drell mecha-
nism and experimental information on the KN and K̄N
scattering amplitudes, can be considered as an indepen-
dent confirmation of this conclusion.

The Λ(1520) excitation in photoproduction illustrates
an aspect that is also relevant for discussions concern-
ing the Θ+ pentaquark. While the Λ(1520)-resonance re-
mains practically undetectable in K−p elastic scattering
(see fig. 2), the resonance is clearly visible in the photo-
production reaction shown in fig. 6. Evidently, the differ-
ence between elastic scattering and photoproduction must
involve reaction mechanisms or channels which are not ac-
cessible in elastic scattering —such as the K∗ meson ex-
change which we assumed in the present study. The situ-
ation for Θ+(1540) production might be similar. Different
reaction mechanisms/channels could be quite selective to
the Θ+ excitation and, consequently, could be a natural
reason why the pentaquark was observed in some exper-
iments but not in others. The Λ(1520) photoproduction
is an excellent example of such a situation. Clearly, at
present, in either case the reaction mechanisms governing
the photoproduction are not yet identified and, moreover,
there are no reasons to believe that they might be similar,
let alone the same.

As a first application, we have analyzed the SAPHIR
data on γp→ pK+K− and shown that our approach gives
an excellent description of the K+p mass distribution for
all energies and the K−p mass distribution in the vicinity
of the Λ(1520)-resonance and for energies above 1.7GeV.
We have shown that the remaining strength can be well
described by a resonance with the parameters given in
eq. (11) —this state could be the Λ(1600) P01-resonance
of the PDG listing.

Since our model allows us to study not only the
invariant-mass spectra but also momentum and angular
distributions of the final particles, it is also possible to
compare the model results with more exclusive (i.e. dif-
ferential) data and to investigate the possible role of the
detector acceptance and kinematical cuts in the extrac-
tion of specific resonances from present or future experi-
ments [53].
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Appendix A. The K∗ meson exchange

contribution

In this appendix we specify the K∗ meson exchange con-
tribution to the reaction γp→ K+K−p used in our model
calculation. Since the energy range where the experimen-
tal information is available, 2.8 ≤ Eγ ≤ 4.8GeV, is al-
ready too high for employing effective Lagrangians [23],
we resort to Regge phenomenology. The reaction mecha-
nism is depicted in fig. 1d), where we take into account
only the excitation of the Λ(1520)-resonance. This has the
advantage that we can use available data on the reac-
tion γp → K+Λ(1520) to constrain the free parameters.
Clearly, other hyperon resonances could contribute as well
and there should be also a nonresonant background for
K∗ exchange. However, it is impossible to constrain those
contributions from data and therefore we leave them out
altogether.

Let us first specify the amplitude for the elementary
reaction γp→ K+Λ(1520). We use phenomenological he-
licity amplitudes for the single t-channel meson-exchange
Regge pole for the process ab→ 12,

Mλ1λa

λ2λb
(s, t1) = −V λ1λa

x (t1)Rx(s, t1)V
x
λ2λb

(t1). (A.1)

Here Rx is the Regge propagator for the exchange of the
meson x,

Rx(s, t1) =
1+(−1)sx exp[−iπαx(t1)]
2 sin[παx(t1)]Γ [lx−α(t1)]

[α′s]
αx(t1) , (A.2)

where sx and lx are the spin of the exchanged meson and
the spin of the lowest state of the Regge trajectory, re-
spectively. For the K∗ meson exchange, we use sK∗ = 1,
lK∗=1. The Regge trajectory αK∗ is taken as

αK∗ = 1 + α′(t−m2
K∗), (A.3)

with α′=0.9 GeV−2 and mK∗ = 892MeV. The vertex
function V is parameterized as

V λ1λa

x (t1) = βλ1λa

x [t1 − tmin]
|λ1−λa|/2, (A.4)

where βx is a helicity coupling constant and tmin is
the minimal four-momentum transfer. The last term in
eq. (A.4) ensures that the spin-flip amplitude vanishes
at forward direction. In principle, each vertex should be
dressed with a form factor, which can be determined from
the t-dependence of the experimental data. When the

Fig. 10. The cross-section for the reaction γp→ K+Λ(1520).
The dotted line is the result obtained with constant reaction
amplitude. The dashed line shows the calculation with K∗ me-
son exchange without form factor and the solid line is the result
obtained with form factor. The solid circles show data from
ref. [6].

masses of the initial and final particles are different, i.e.
m1 6= ma and m2 6= mb then

tmin ' −
(m2

a −m2
1)(m

2
b −m2

2)

s
. (A.5)

Finally, the differential cross-section for the reaction
ab→ 12 is given as

dσ

dt
=

1

(2sa+1)(2sb+1)64πλ(s,m2
a,m

2
b)

∑

λi

|Mλ1λa

λ2λb
|2,

(A.6)
where sa and sb are the spins of the initial particles and
the summation is over all helicity amplitudes. Within this
approach it is straightforward to include any meson ex-
change and any initial and final states. A detailed com-
parison between model calculations and data from pion-
and kaon-induced reactions are given in refs. [48,54–56].

The principal uncertainties of this model are due to
the unknown helicity couplings and possible contributions
from different exchange trajectories. The model parame-
ters can be fixed only by comparison with available ex-
perimental results. For instance, the energy dependence
of the reaction cross-section is driven by the energy de-
pendence of the Regge propagator, which can be used for
fixing the exchange trajectories. The γp → K+Λ(1520)
reaction cross-section was measured [6,7] and is shown in
fig. 10 as a function of the photon energy. The dotted line
shows the cross-section for Mλ1λa

λ2λb
= const.

For the K∗ exchange the K∗Kγ coupling constant can
be determined from the K∗ → Kγ decay, but the cou-
plings and possible form factor at the K∗NΛ(1520) vertex
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Fig. 11. The γp → K+Λ(1520) differential cross-section as
a function of −t. The curves are results of model calculations
with K∗ meson exchange without form factor (dashed line)
and with form factor (solid line). The data are from ref. [6].

are unknown. These uncertainties allow enough freedom
to reproduce the absolute normalization of the data. Also,
the energy dependence of the reaction cross-section, and
the t-dependence of the differential spectra and density
matrix elements can be fitted simultaneously resulting in
a quite reasonable determination of the free parameters.

The dashed line in fig. 10 shows the result fromK∗ me-
son exchange. It is in line with the data over the photon
energy range covered by the LAMP2 experiment. In this
particular fit to the data we omitted form factors at the
vertices but adjusted instead the overall normalization of
the total amplitude. Let us mention though, that in prin-
ciple the coupling constants for each helicity amplitude
should be different [48].

Additional information on the reaction mechanism is
contained in the t-dependence. Note that the vertex func-
tions of the helicity amplitudes given by eq. (A.4) are pro-
portional to (−t)n/2 with n = |λ1−λa|+|λ2−λb| being the
net helicity flip. This implies that the spin-flip amplitudes
vanish at forward direction and increase with |t|. Data
on the differential cross-section for γp → K+Λ(1520) as
a function of t, the square of the four-momentum trans-
ferred, for photon energies 2.8 < Eγ < 4.8GeV [6] are
presented in fig. 11. The dashed line is our result with-
out form factors. Apparently it is in disagreement with
the data. Indeed the calculated differential cross-section
increases with |t|, which is an unphysical dependence ex-
hibited by the low-t Regge model. Thus, to describe the
data one needs to introduce form factors. We take those
form factors to be F (t) = exp(3t) for all helicity ampli-
tudes. Furthermore, we assume that the form factors do
not depend on the photon energy. This assumption is not
necessarily correct because other higher-mass meson ex-

changes might contribute and could be dressed with dif-
ferent form factors. Alternatively, one can introduce ab-
sorptive corrections [48,57,58] that allow one to reproduce
the t-dependence phenomenologically.

The solid lines in figs. 10 and 11 show results for
γp → K+Λ(1520) calculated with the inclusion of the
form factor F (t) = exp(3t) for each helicity amplitude
in eq. (A.1). Now the differential cross-section is well re-
produced by the model. However, at the same time the
description of the integrated cross-sections deteriorates
somewhat. In order to achieve a better overall descrip-
tion of the experiment one could either readjust the K∗

meson exchange trajectory or assume that the form factor
depends also on the energy. The latter case is more natu-
ral since the data generally indicate that the slope of the
t-dependence depends on energy. Experimental results on
the energy dependence of the slope of the t-dependence
for different photoproduction reactions are reviewed in
refs. [59–61]. Anyway, for our purpose the semiquantita-
tive description of the data on γp→ K+Λ(1520) as given
by the solid line is sufficient and, therefore, we refrain from
exploring further options at this stage.

Once the amplitude for γp → K+Λ(1520) is estab-
lished we can then construct the reaction amplitude M
for γp→ K+K−p. It is given by [62]

M(s, t1, θ, φ) =
∑

λ2

Mλ1λa

λ2λb
(s, t1)G2(s2)M

λ2

λcλd
(θ, φ),

(A.7)

where Mλ1λa

λ2λb
is the production helicity amplitude given

by eq. (A.1) and Mλ2

λcλd
is the amplitude corresponding to

the decay of the resonant state 2 with helicity λ2 into the
system cd with helicities λc and λd, respectively. Further-
more, G2 is the propagator of the resonant state and s2
is the invariant mass of the 2 → cd decay products. The
propagator is parametrized in a Breit-Wigner form with
an energy-dependent width as proposed by Jackson [63],

G2(s2) =
m2Γ (

√
s2)

s2 −m2
2 + im2Γ (

√
s2)

, (A.8)

where m2 is the resonance mass and the energy variation
of the width is given by

Γ (
√
s2) = Γ0

[

λ1/2(s2,m
2
c ,m

2
d)

λ1/2(m2
2,m

2
c ,m

2
d)

]2l+1
ρ(
√
s2)

ρ(m2)
. (A.9)

In the latter formula l is the orbital angular momentum
of the 2 → cd decay and Γ0 is the width at

√
s2=m2,

while ρ(
√
s2) is a factor varying slowly with energy given

by Glashow and Rosenfeld as [64]

ρ(
√
s2) =

1√
s2

[

X2+
λ(s2,m

2
c ,m

2
d)

4s2

]−l

(A.10)

with the parameter X = 350MeV fixed from a fit of the
baryonic resonances in the context of unitary symmetry.
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